La epistemología activa

TOMÁS BRODY

La Física se presenta a los estudiantes universitarios como una gran acumulación de hechos y teorías, un inmenso edificio de erudición que, en un lapso de unos cuantos años, ellos deben aprender a emplear como una herramienta para resolver problemas. Sin embargo, un mayor acercamiento —desafortunadamente no accesible al estudiante, por carecer del conocimiento necesario—, permite ver que esta imagen no es completamente satisfactoria.

En primer lugar, el edificio no posee ningún principio guía que sea definitivo. La Física puede ser definida como el estudio del movimiento y la estructura de la materia, de la manera en que la estructura de las cosas determina su movimiento y cómo las leyes del movimiento determinan a su vez la estructura. No obstante, esto es demasiado amplio, pues las cosas móviles más visibles de nuestro medio, los seres vivos, son estudiados por la Biología y no por la Física, y la estructura más importante, la sociedad humana, se considera fuera del ámbito de las ciencias naturales. Lo que es más, mucho de lo que aprenden los estudiantes tiene que ver con solución de ecuaciones y, ¿cómo hay movimiento o estructura en la ley de Ohm? De hecho, lo que se incluye en Física y lo que se ve en otras cien-

cias es decidido sólo en parte haciendo referencia a algún principio abstracto, ya que con frecuencia los factores históricos tienen una mayor influencia, y entre ellos la conveniencia académica no es marginal. Lo mismo ocurre con la división de las ciencias establecida de una vez por todas. Algunos ven la Astronomía como parte de la Física, mientras que otros, con razones igualmente válidas, la consideran una ciencia independiente. Las fronteras entre Física y Química, y entre Física y Matemáticas, están en constante movimiento, y el trazo de la línea divisoria entre Física y Tecnología sigue siendo un problema aún sin resolver.

En segundo lugar, y como veremos con más detalle, la idea de la Física como un “edificio de erudición”, de una simple, constante y progresiva acumulación de verdades definitivas, es errónea. Una vez que el estudiante se titula, es libre de iniciarse en la práctica y es entonces que descubre que la Física no es el cúmulo de conocimientos que comúnmente se dice, sino más bien un esfuerzo constante de mejorar, completar nuestras ideas previas y, en este proceso, rehacerlas. Esto implica una infinita diversidad de opiniones y conceptos, e interminables discusiones y discrepancias, ahí donde la apariencia de ortodoxia parece estar a salvo de ser trastocada. La Física, y la ciencia en general, no es un producto terminado, sino el proceso de su creación, no es un cuerpo de conocimientos ya establecido, coherente y unificado por principios básicos de los que todo lo demás deriva, sino la lucha y el esfuerzo discontinuado por adquirir este conocimiento, ya que a cada paso que se da, hay que volver a trabajar mucho de lo que antes se tenía. La Física es una disciplina en movimiento, no una doctrina o un cuerpo de conocimientos cargado de tradición, o al menos no debería serlo.

Si la Física es esencialmente el proceso de adquisición de conocimiento físico, entonces un análisis de este proceso debe constituir al menos el punto de inicio de toda filosofía de la Física. [...]
“Hacer algo y ver qué pasa”

Podríamos iniciar observando un ser humano, de preferencia un niño pequeño, en el momento en que se encuentra ante un objeto cuya naturaleza y propósito desconoce. Después de uno o dos segundos el niño estirará la mano y lo tocará cautelosamente con un dedo, después lo tomará y lo levantará, y si lo logra, le dará vuelta y lo apretará o estirá para ver si pasa algo. Quizá lo olvidará o tratará de morderlo, y tal vez algunos niños lo aventarán al piso para ver si se rompe o para hacer ruido. Lo que ningún niño hará es sentarse a contemplar el objeto y esperar a que éste organice las impresiones de sus sentidos en un concepto que le dé sentido.

Las reacciones de un adulto son menos dirigidas de manera unívoca en este canal. En parte porque, por lo general, tiene mucho más experiencia acumulada como para poder elaborar una suposición razonable acerca de la naturaleza del objeto (“¡oh, seguramente es el último grito en encendedores!”), pero también porque esta misma experiencia le ha enseñado que la novedad de los objetos desconocidos es efímera y que casi siempre carecen de mayor interés. En otras palabras, un adulto ha aprendido a canalizar su curiosidad hacia direcciones que prometen satisfacciones más duraderas, sean éstas la actividad de otros congéneres, las interacciones de las formas que dejan unas pinceladas sobre un óleo o el comportamiento errático de los electro-
tos sencillos que sirvan como base para que el robot pueda recibir una orden y actuar en su pequeño mundo. Por ejemplo, uno de estos supuestos podría ser que sólo cuando las líneas constituyan realmente los contornos de las sombras, el movimiento de la fuente de luz puede hacer que éstos se muevan. La dirección y la distancia en que se muevan sería una indicación de la orientación de las superficies en que se reflejan las sombras, lo que reduciría el número de interpretaciones posibles por examinar. Un programa de acción de este tipo es fácil de elaborar y no requiere recursos informáticos muy poderosos. Es cierto que esto no resolvería por completo el problema del reconocimiento de los objetos en un mundo de sólidos más o menos regulares, pero sí lo reduciría a un problema de menor complejidad, y bastaría con repetir esta estrategia hasta que el problema llegue a tener proporciones manejables. Así, podríamos mover la fuente de luz otra vez de una manera diferente, mover la cámara, o que el robot pudiera actuar sobre su pequeño “mundo” por medio de un brazo que le permitiera remover algunos de los objetos que sean reconocidos entre el resto de las cosas, con el fin de saber qué hay detrás de ellos. Sin embargo, aunque promisorias, estas técnicas no han sido todavía concretizadas en un sistema completo para adquirir conocimientos. Parece que no sólo hay ciertos problemas técnicos por resolver, sino también conceptuales.

Las implicaciones epistemológicas de un trabajo como el descrito son claras. Primero que nada el problema de interpretar lo que el observador ve es computationalmente complejo, ya que si se tienen pocos elementos en escena, una comparación sencilla con formas conocidas puede ser suficiente para eliminar las posibilidades no deseadas. Pero los requerimientos informáticos, el tiempo de ejecución y el espacio en memoria, crecen exponencialmente con el número de elementos. Es por ello que los intentos por obtener una interpretación completa de las imágenes individuales pocas veces dan resultados satisfactorios —aunque hay algunas excepciones, en particular en imágenes de dos dimensiones, como las obtenidas desde un satélite, que a pesar de su gran complejidad, es posible interpretar con ayuda de información obtenida por medio de otras fuentes.

Un procedimiento factible para reducir la riqueza y la complejidad de la escena que se tiene enfrente, es la de “adivinar” elaborando una interpretación parcial por medio de un “modelo” inicial de la escena. Esta interpretación tipo adivinanza implicaría predecir que la acción A1 hará cambiar a C1 en la escena, que la acción A2 hará cambiar C2, y así sucesivamente. Cuando la nueva imagen presenta el cambio previsto, quiere decir que una de estas acciones ocurrió, y que la adivinanza fue hasta cierto punto confirmada. Estas predicciones de cambio pueden contener parámetros indefinidos —como por ejemplo, que el contorno de una sombra se moverá cuando la fuente de luz se mueva—, pero el alcance del movimiento no será predecido, ya que los valores de estos parámetros se pueden derivar del cambio observado, de manera que la interpretación se vaya detallando posteriormente.

El ciclo que consiste en “adivinar” un elemento de la escena basándose en lo que ya se obtuvo, de hacer predicciones acerca de las consecuencias de posibles acciones, de escoger y ejecutar una de ellas, y de usar los cambios que muestra la nueva escena con el fin de mejorar la interpretación, se debe repetir tan frecuentemente como sea necesario, hasta lograr una interpretación suficientemente detallada. Este ciclo, que para abreviar será llamado el ciclo epistémico, es una forma más definida de la idea de “hacer algo para ver qué pasa”, esbozada ya antes.

El ciclo epistémico

El ciclo epistémico empieza con un modelo inicial y su repetición constante mejora el modelo hasta lograr un ajuste adecuado. Es obvio que el modelo inicial debe proceder de otras fuentes de información. En una computadora que controla un robot, es probable que la fuente más relevante sea lo que el programador ha establecido como puntos de arranque. A nivel humano, la información obtenida por medio de la interacción con otras personas posee la misma importancia, al igual que la experiencia obtenida en situaciones similares a las que se están enfrentando en la interpretación. Un rico acervo de este tipo de conocimiento puede proporcionarnos modelos que prácticamente no hace falta mejorar. Finalmente, otra fuente para la elaboración de modelos procede de un mecanismo aún no discutido, que ocurre cuando el ciclo epistémico falla.

No hay garantía alguna de que la constante repetición del ciclo epistémico lleve a un modelo satisfactorio del fragmento de la naturaleza que se esté estudiando. De hecho, esto no es posible, ya que el proceso puede no converger y oscilar fácilmente, y aun cuando convergiera, podría llegar a una representación que desde algún punto de vista relevante esté errada. Cuando ello ocurre, el modelo al que se ha llegado debe ser descartado y el ciclo epistémico tendrá que recomenzarse con un modelo inicial diferente. Un nuevo modelo inicial podría ser encontrado de diferentes maneras, incluyendo aquellas ya indicadas para el primer modelo inicial. Sin embargo otra opción es tomar el modelo que arribe de donde se corrigió la falla que llevó al cambio que se hizo en el primer modelo. En otras palabras, el mecanismo del ciclo epistémico se vuelve a aplicar, pero a un nivel
superior, es decir, la acción no se lleva a cabo directamente en el segmento de la naturaleza que se está estudiando, sino que toca el punto de inicio del ciclo del nivel inferior y entra cuando este ciclo no está funcionando correctamente.

Para lograr esto es necesario que el ciclo del nivel superior tenga su propio modelo con una forma inical y un movimiento gradual hacia un modelo más adecuado. El modelo de nivel superior sería de alguna manera una abstracción del tipo de modelos empleados en el nivel inferior. Por ejemplo, para un robot en un mundo geométrico, éste contendría algunas generalizaciones como el que el tamaño de los objetos se encuentran dentro de ciertos límites, que sus formas son regulares, que no son concurrentes y que están delimitadas por superficies cuya geometría puede ser descrita por funciones de al menos segundo grado.

Así, un ciclo epistémico de nivel superior parece ser indispensable, y una vez que exista la maquinaria para su aplicación es obvio que será usado recurrentemente. En otras palabras, una vez que el ciclo epistémico de segundo nivel funcione, tendríamos ciclos de tercer nivel y de niveles aún más elevados, hasta llegar al nivel necesario para poder crear un modelo que permita actuar a todos los niveles. No sabemos aún como desarrollar estas ideas de manera satisfactoria y flexible en un programa de computación, pero sus implicaciones filosóficas son de largo alcance.

Quizá el seguimiento sistemático de este tipo de epistemología pueda traer a la mente de algunas personas, el espectro del ya viejo debate acerca de la "ideas innatas". Lo que parece un poco inquietante aquí no es tanto el concepto de predisposiciones innatas —aunque es cierto que las observaciones de re cién nacidos hacen pensar que en verdad poseen desde el momento del nacimiento y tal vez desde antes, ciertas reacciones, hacia su medio que funcionan de manera de pun tos de inicio para ciclos epistémicos como los aquí descritos. Se trata más bien de dos problemas distintos: uno, que parece difícil atribuir a un re cién nacido cualquier concepto que raf leje su mundo circundante suficientemente bien como para que él tenga alguna comprensión de éste, y dos, que si el niño comienza su vida con conceptos de este tipo, ¿cómo darán estos formas y color a sus nociones acerca del mundo? ¿Qué le esconderán el mundo "real"? ¿Será finalmente que sólo ve mos aquellas cosas que nacimos para ver?

La respuesta a estos dos puntos se encuentra en la extraordinaria flexibilidad del proceso epistémico. El parecido entre el modelo inical y el último modelo que se elabo debe ser tan pequeña que se pueda ignorar. Parece que la simple existencia del modelo inical permite su convergencia hacia un final que sea satisfactorio, y que poco importa el modelo inical con que empieza el proceso, pues el modelo final será casi lo mismo. En cada ejecución del ciclo, por decir algo, el remanente de "contenido" inical decrece en importancia, mientras que la contribución producida por la adaptación al carácter real del segmento que está siendo modelado aumenta de manera proporcional. Y una vez que esto ha sido entendido, el primer problema desaparece también, ya que el modelo de inicio no necesita ser conceptual, basta con que contenga el impulso suficiente para echar a andar la "maquinaria de trabajo" del ciclo epistémico, con acciones al azar que respondan a cualquier sentimiento que llegue en cualquier momento. Gran parte de la maquinaria del cuerpo ya se encuentra trabajando apropiadamente y su interacción con el mundo proporciona los puntos de inicio necesarios. Los conceptos llegarán más tarde.

De hecho, la formación de conceptos requiere que varios niveles superiores estén trabajando. Por ejemplo, el concepto de rattle* —el nombre que los adultos dan a la noción de algo que se puede asir y que hace ruido cuando se sacude—, no puede emergir hasta que varios modelos de primer nivel han sido construidos y que han sido reconocidos como iguales, pues sólo entonces puede surgir la espec tativa —y ésta es un modelo de nivel superior— de que otro rattle pueda aparecer. Y el concepto de rattle se completa cuando se reconoce que algunos rattle tienen mucho en común, mientras que otros sólo comparten la propiedad central de hacer ruido cuando son sacudidos, sin la cual serían algo totalmente diferente.

* rattle podría ser traducido como el sonido de una sonaja o "sonajar", pero su significado es muy amplio.
Modelos y submodelos

Regresemos al problema de la interpretación por computadora de una escena observada para ver cómo la mejoría del modelo no es simplemente una mejoría uniforme y general. Esto es particularmente evidente cuando hay varios objetos en el "mundo" que se quiere entender, ya que por lo general los objetos son reconocidos uno por uno, y cada objeto que es reconocido reduce el número indefinido de posibilidades del total de la escena. El reconocimiento de cada objeto individual ocurre de la misma manera independientemente del número de objetos presentes, lo que significa que se ha generado un submodelo.

Así, el modelo es una colección de submodelos que se mantiene unido por las relaciones existentes entre ellos, al interior de un marco que posee suficiente flexibilidad para poder acomodar cualquier variación que sufran los submodelos en el proceso de afinación. En la medida que los diferentes submodelos pueden tomar diferentes caminos a lo largo de este proceso, se puede inferir que éstos no tienen que ser completamente consistentes. Deberemos estudiar entonces, todos los niveles de inconsistencia, por dos razones: en primer lugar, porque permite el uso de modelos ya existentes como submodelos de otros modelos, y en segundo, porque permite —tanto a la computadora como a un ser humano— adaptar cada submodelo sin referirse al modelo en su conjunto. Si esto no fuera posible y cada vez que algún modelo fuera mejorado en cierto nivel se tuviese que ajustar el conjunto de modelos superordenados, entonces, alcanzar la comprensión estaría más allá de nuestro alcance, ya que ninguna comprensión parcial sería posible ni útil. Por ello se puede decir que las inconsistencias aceptables entre los submodelos, al interior de un modelo, son el aceite de la maquinaria epistémica.

Si las ideas esbozadas en el párrafo anterior son correctas, es obvio que después de un número finito de aplicaciones de ciclo epistémico de profundidad variable, pero finita, un modelo puede llegar a ser suficientemente bueno como para constituirse en una herramienta de trabajo, aunque nunca dejará de ser un modelo parcial, ya que no puede cubrir todos los aspectos del segmento de la naturaleza que representa, y porque será una representación inexacta del mismo, pues algunos aspectos son siempre fuertemente distorsionados.

A pesar de esto, su utilidad es innegable, como se puede apreciar haciendo una analogía con un mapa. Por ejemplo, un mapa del metro de Londres representa de manera inexacta la distancia entre las estaciones, traza a voluntad las curvas y los tramos rectos y señala las estaciones con círculos de formas distintas, y aun así logra representar claramente la topología de la red del metro que es el propósito de un mapa de este tipo. Con este ejemplo hemos introducido un concepto decisivo: los mapas, al igual que los modelos, tienen un propósito. Es por ello que diferentes mapas de la misma región —y diferentes modelos del mismo segmento de naturaleza— pueden ser incompatibles, ya que cada uno distorsiona distintos aspectos para lograr distintos objetivos. Sin embargo, podemos combinarlos a fin de obtener una comprensión más completa de la región o del segmento de naturaleza. Y con esto se entiende por qué las incoherencias a las que nos referimos anteriormente resultan ser necesarias: cada modelo epistémico responde a propósitos distintos y generalmente incompatibles.

Modelos y objetivos

La idea de que cada modelo construido responde a un propósito resulta ser relevante también desde el punto de vista de la heurística empleada para escoger cuáles de las acciones posibles son ejecutadas en un ciclo epistémico y cuáles son usadas para decidir en qué momento detenerlo. Una acción es escogida en un ciclo cuando su efecto esperado es algo que queremos poder predecir sobre la base del modelo empleado. Y el ciclo se repite hasta que el modelo nos proporcione un plan que funcione con la precisión requerida para lo-
sualidad del modelo aumentan, su objetivo cubre un espectro más amplio. Ningún modelo carece de objetivo, incluso el más general de todos busca, de manera muy simple pero muy definida, hacer avanzar nuestra comprensión.

Todos los modelos considerados hasta ahora se aplican a fragmentos finitos de nuestro universo, de hecho a muy pequeños fragmentos —aspecto muy relevante desde un punto de vista meramente filosófico. Incluso la misma cosmología trata únicamente de algunas propiedades estándar del universo y deja de lado una inmensidad de detalles que requeriría una descripción completa del universo. Esto sugiere que la idea de una teoría exacta y completa del universo, que sea capaz de predecir cada aspecto posible de todo lo que sucede en él, es incompatible con la epistemología aquí descrita. Una teoría de este tipo constituiría, en la terminología empleada aquí, un modelo universal que nunca necesitaría ser revisado, por lo que aparentemente sería deseable trabajar en su elaboración.

Sin embargo, se daría una complicada circularidad en un modelo que también debería predecir todas las acciones emprendidas en su construcción y en su modificación, antes de lograr concluirse. Se puede decir que un modelo de este tipo carece de utilidad, ya que tendría que comportarse en todos y cada uno de sus aspectos exactamente como lo hace el universo que representa, y sería por lo tanto, tan difícil de manejar y de entender como el universo mismo. Además, ¿cómo podríamos decir cuál es el universo y cuál es su modelo? De acuerdo con Leibniz, ambos serían idénticos, ya que compartirían cada una de las propiedades que se les atribuyen. En conclusión, la búsqueda de un modelo universal y perfecto es absurda.

Esta conclusión no implica que no pueda existir la verdad, ya que sí es posible que exista, pero no se trata de una verdad absoluta, sino de una verdad parcial y relativa. En realidad no necesitamos más, ya que “demasiada verdad” lle-
nará nuestras mentes de una infinidad de cosas irrelevantes y no podríamos ver más que el árbol, perdiendo de vista el bosque en su conjunto. Sin embargo, esta verdad es parcial y limitada porque el tipo de modelo que proporciona este proceso epistémico posee representaciones imperfectas y distorsiona algunos aspectos del fragmento de la naturaleza que se está representando.

Este precepto tiene dos implicaciones que es necesario aclarar: a) en primer lugar, hemos asumido tácitamente una ontología totalmente realista, que en la moderna filosofía académica se denomina despectivamente con el término de “realismo naïve” (inocente). Lo que hace que inevitablemente lleguemos a esta ontología es el hecho de que la interacción activa con el fragmento del mundo que se quiere comprender, es parte esencial e indispensable del ciclo epistémico, por lo que la existencia de este mundo independientemente de nosotros tiene que ser aceptada desde un principio. La propuesta solipsista de que en realidad lo que ocurre es que pensamos que actuamos sobre el mundo, pero que no tenemos ninguna evidencia de que efectivamente lo hiciéramos, más que las evidencias que nos proporcionan nuestros sentidos, resulta inadecuada por dos razones. Primero, porque la epistemología activa aquí expuesta, con sus preceptos realistas, está construida sobre la base de una ontología completamente opuesta —un procedimiento contradictorio en sí mismo; y segundo, que siempre será un misterio el porqué, al menos en un principio, nuestros modelos hacen predicciones erróneas y cómo, a medida que se corriegen, mejoran su capacidad predictiva.

b) El concepto de verdad aquí empleado es de tipo correspondientista, pero las dificultades que normalmente conoce este concepto no se presentan aquí en parte por el tipo de correspondencia que se requiere aquí, y en parte porque la correspondencia es, como ya lo vimos, necesariamente parcial e inexacta. Las teorías de la correspondencia más comunes presuponen, tácitamente la mayoría de las veces, un tipo de correspondencia fotográfico, quizá como una fotografía a color en tres dimensiones. Sin embargo, ni el cerebro humano, ni la memoria de una computadora contienen algo que se le parezca, y además no sería de ninguna utilidad que así fuera, pues lo que hace falta es una correspondencia dinámica, una correspondencia de comportamiento. Si por ejemplo, en el mundo real un espejo se hace pedazos si lo dejamos caer al piso, es obvio que el modelo que representa al espejo no tiene por qué romperse, pero a medida que la distancia entre el modelo del espejo y el modelo del piso se acerca a cero, el modelo debe mostrarnos que el concepto de espejo se va volviendo inaplicable, y que tiene que ser sustituido por un modelo de muchos pedazos de espejo. En otros casos el modelo puede diferir, y de hecho, debe hacerlo a fin de que sea fácil de usar. En pocas palabras, el modelo reproduce las relaciones estructurales que existen entre los aspectos relevantes del fragmento que se quiere representar, pero estas relaciones pueden existir entre muchas otras cosas distintas, lo que en términos físicos significa que el modelo obedece a la misma ecuación, o a una muy similar, que describe la evolución de algún proceso, de la misma manera que esto ocurre en la realidad.

Estas dos implicaciones no sólo presuponen que el ciclo epistémico que hemos descrito funciona, en el sentido de que produce conocimientos válidos, sino también que es el único método para adquirir conocimientos que tenemos a nuestra disposición. Es cierto que esto no ha sido probado, pero si efectivamente es éste el único método, ninguna prueba de ello será posible. Sin embargo, lo que podemos hacer es argumentar que, por experiencia, ésta es la única manera de adquirir nuevos conocimientos originales (la condición de original es sólo con el fin de eliminar la adquisición irrelevante de conocimientos de gente que ya los tiene).

Parece ser que en este campo sólo hay dos contrincantes de peso: la inspiración y la inducción (en el sentido de John Stuart Mill). La inspiración como intuición o celebración inconsciente de ninguna manera es un contrincante, ya que es ella la que proporciona la mejoría del modelo previo que completa cada aplicación del ciclo epistémico, debido a que su naturaleza es fundamentalmente creativa, pues la adquisición de conocimiento es en realidad un proceso de re-creación del mundo. Cuando se separa del ciclo epistémico, la inspiración sufre del defecto de no ser verificable —son muy comunes los casos en que alguien ha tenido una inspiración y alguien más tiene otra, pero incompatible. Un último aspecto filosófico tiene que ser señalado. La epistemología activa nos proporciona, como se ha visto hasta ahora, bases razonables para una ontología realista. Para ser más preciso, nos proporciona un terreno en el que podemos asumir que los fragmentos de naturaleza sobre los que actuamos tanto con éxito como sin él, tienen una existencia real en el ciclo epistémico, independientemente de lo que pensemos de ellos pero no independiente de lo que les hagamos, y más aún, que la repetición constante del ciclo epistémico lleva a un modelo sobre el que se puede trabajar hasta obtener un conocimiento, una comprensión del fragmento del mundo que deseamos entender, con lo que el argumento de Hume pierde toda validez. Finalmente, este proceso pone de manifiesto que ninguna generalización inductiva, si acaso ésta fuera posible, podrá jamás lograrse.

La investigación científica

Hasta ahora, la discusión se ha basado en la observación de seres humanos inmersos a nivel individual en un proceso de adquisición de conocimiento, así como en el análisis de programas de computación que realizan un proceso análogo —las computadoras son capaces, al menos en teoría, de comportarse de una manera...
que puede ser considerada inteligente. Tenemos por lo tanto, dos tipos de sistemas completamente diferentes que son capaces de adquirir conocimientos. Ambos usan el ciclo epistémico y, de hecho, como lo muestra nuestra discusión, es posible observar uno de estos sistemas y obtener conclusiones que permitan comprender el funcionamiento del otro, lo cual es muy útil, pues lo que conocemos de uno puede complementar lo que sabemos del otro. Los procesos humanos de conocimiento alcanzan altos niveles de abstracción, pero su funcionamiento interno no es fácilmente accesible a la examinación —excepto tal vez por medio de técnicas necesariamente limitadas de observación, limitadas por la necesidad de mantenerlas no invasivas—, mientras que el proceso de la computadora podría ser estudiado con todo el detalle que se desee, pero hasta ahora no ha sido muy desarrollado.

Sin embargo, hay un tercer tipo de sistema que emplea el ciclo epistémico: la investigación científica. A pesar de que se trata también de una actividad humana, existen suficientes razones para considerarla bastante distinta a la adquisición individual de conocimiento, ya que pocas veces es completada el ciclo epistémico por una sola persona y por supuesto que nunca con la velocidad y la casi inconsciencia con que se hace a nivel individual. Se puede decir que es la forma social del ciclo epistémico. En la investigación, una sola ejecución del ciclo puede durar semanas, meses y a veces años, y por lo general, aunque no necesariamente, es realizada por varios investigadores que trabajan juntos, y —particularmente en la Física— la construcción y modificación del modelo es frecuentemente llevada a cabo por un equipo, mientras que la interacción con el fragmento de naturaleza es efectuada por otro.

Aquí podemos ver algo que desde el punto de vista de la epistemología activa es natural e inmediato, pero que para cualquiera de las epistemologías de es-

critoario es muy difícil o casi imposible de explicar: ¿por qué la investigación científica tiene que hacer experimentos? Se puede observar con cierta tristeza que esta pregunta es raramente formulada por los filósofos de la ciencia de academia. De hecho, toda la parte experimental, que constituye la mitad o tal vez más de la mitad de la Física, es apenas abordada es estos estudios, salvo honrosas excepciones.

Este tercer sistema epistémico ofrece más elementos para la comprensión del proceso epistémico. Por medio de él podemos examinar con detalle algunas cuestiones como la estructura y los tipos de modelos teóricos —algo no fácilmente accesible en los otros dos sistemas.

Una diferencia de grado

¿Implica todo lo aquí dicho que no existe una distinción fundamental, clara y definida entre el pensamiento científico y otro tipo de pensamiento (¿preciencístico)? Se puede decir que la diferencia es más bien de grado. La primera es la forma socializada conscientemente y organizada para funcionar entre grupos de personas que poseen la segunda. Hay una diferencia cualitativa entre ambas, pero también una transición gradual, con muchas situaciones intermedias. Lo que es más, cuando se analizan los detalles de la forma científica del ciclo epistémico se puede observar que ésta requiere y presupone la forma individual. La búsqueda de un criterio de delimitación lógicamente formulado entre la teorización científica y las demás formas de conocimiento seguirá siendo inútil, y de hecho, a pesar de los enormes esfuerzos del ingenio invertidos en ella, es ésta la conclusión a la que se ha llegado.

Existe una distinción clara entre una teoría desarrollada por medio de un ciclo epistémico, en la que la interacción con un fragmento relevante de la realidad ha permitido afinar adecuadamente la teoría, y una simple especulación. Sin embargo, la especulación no debe ser descartada, ya que nos puede proporcionar pistas de gran utilidad. Incluso podría ser incorporada a un ciclo epistémico y convertirse en una teoría de manera integrada con su parte experimental, pero correría el riesgo de convertirse en un obstáculo para futuros ciclos epistémicos, que es lo que ocurre cuando se eleva, o más bien, cuando se envuelve, la especulación en dogma.

Bibliografía


Crisbó, J. 1994. "La Física como disciplina espe


Traducción: César Carrillo Truesra

Nota. Con el fin de hacer más sencilla la lectura y de preservar el texto a un público no especialista, no permití suprimir algunos breves pasajes, añadir subtítulos y modificar ligeramente la redacción, siempre tratando de mantener la esencia del texto. Espero haberlo logrado. Agradezco a Luis de la Peña y a Shahrak Hayazan, la revisión del texto.